NCdl Nanoclay Research: The Field of Montmorillonite Past, Present and Future

Ru Chih C. Huang PhD. Professor of Biology Johns Hopkins University 2011

The Field of Montmorillonite Past, Present and Future

I. General Description of Montmorillonite (Nanoclay)

Montmorillonite is a very soft phyllosilicate group of minerals that typically form in microscopic crystals, forming a clay. It is named after Montmorillon in France. Montmorillonite, a member of the smectite family, is a 2:1 clay, meaning that it has 2 tetrahedral sheets sandwiching a central octahedral sheet. The particles are plate-shaped with an average diameter of approximately one micrometre. Members of this group include saponite.

It is the main constituent of the volcanic ash weathering product, bentonite.

The water content of montmorillonite is variable and it increases greatly in volume when it absorbs water. Chemically it is hydrated sodium calcium aluminium magnesium silicate hydroxide $(Na,Ca)_{0.33}(Al,Mg)_2(Si_4O_{10})(OH)_2 \cdot nH_2O$. Potassium, iron, and other cations are common substitutes, the exact ratio of cations varies with source. It often occurs intermixed with chlorite, muscovite, illite, cookeite, and kaolinite.

Ref.

<u>http://en.wikipedia.org/wiki/Montmorillonite</u> Last modified on Dec. 14, 2010
 Purification and properties of *Montmorillonite American Mineralogy*; 38, 707-724 (1953).

II. Unit Cell of Montmorillonite

Unit cell of montmorillonite based upon Grim.

Ref. Grim, R. E. *Clay Minerology* Seconded (1968) Ref. Joshi P. C., Aldersley, M. F., Delano J.W. and Ferris J. P. *J. AM. CHEM. SOC.* (2009) 131, 13369-13374.

III. Key References from the Leaders in the Field

a. On Mechanisms of Montmorillonite Catalysis in the Formation of RNA Oligomers

Ref. J. AM. CHEM. SOC. (2009) 131, 13369-13374. Studies from James P. Ferris's group at New York Center for Astrobiology and Rensselaer

b. (1) On montmorillonite accelerating the spontaneous conversion of fatty acid micelles into vesicles clay particles after encapsulated in these membrane vesicles. In addition, RNA adsorbed to clay can be encapsulated within vesicles once formed, such vesicles can grow by incorporating fatty acids supplied as the micelles.

Ref. Science (2003) 302, 618-622.

(2) Physical Effects Underlying the Transition from Primitive to Modern Cell Membranes

From single-chain lipids of ancient cell to diacyl or dialkyl glycerol phospholipids of all modern cell membranes

Ref. PNAS, Mar. 29, 2011 Vol. 108 5249-5254.

The study was carried out by Jack W. Szostak, a Nobel winner at Howard Hughes Medical Institute, Mass. General Hospital Boston. The paper was reviewed by Gerald F. Joyce, member of the National Academy U.S.A.

IV. A. Progress Report on NC_{dl}: A Descriptive Summary

Structural analysis and anti-HIV activities of NC_{dl} (clay-based PLSNs, polymer layer silicate nanocomposites)

Samples:

Three different preparations of NC_{dl} have been supplied by David C. K. Lo; Managing Director Telekal Co., LTD

Preparations:

- A. Dry white powder (WP app. 30 grams)
- B. 0.8% solution in H₂O, Eyecare prep (EC) app. 50ml
- C. Chopstick (CPS), 4 chopsticks each weighed 10.8g

NC_{dl} Studies and Results

1. The size and chemical composition of a fully water saturated NCdl (EC prep) by dynamic light scattering technology (DLS) and ICPCHEM method respectively.

Jack W. Szostak's group used this technique, for studying the particle size of their NC preparations as described.

(Science: 2003, 302 Supporting Online Material www.sciencemag.org/content/302/5645/618/suppl/DC1)

2

Light scattering and FFF. Dynamic light scattering (DLS) data was collected on a temperature controlled PD2000/Batch instrument (Precision Detectors, Inc. Franklin,MA) at 25°C. Static light scattering (multi-angle laser light scattering, MALLS) particle size measurements were made with a DAWN-EOS instrument, Wyatt Technology Corp. (Santa Barbara, CA), used in flow-mode to analyze the output from a F1000-FO fritoutlet, flow-field fractionation (FFF) system (Postnova Analytics, Salt Lake City, UT). The FFF system was operated with a 30 kD cellulose membrane at a channel flow velocity of 2.0 ml/min and a cross-flow velocity of 0.8 ml/min to optimize the separation of particles in the size range of 50-200 nm. The frit-outlet system was operated at a channel inlet to outlet flow ratio of 2.4 to concentrate the vesicles prior to analysis by the MALLS device.

EC preparation of NC_{dl} was centrifuged at 10,000xg for three minutes at 20°C. The nonpelleted fraction was used for the DLS measurements. Two independent measurements showed the NCdl at 41.8nm (Sample 1) and of 52.24nm (Sample 2) in diameter.

Professor Chia-Chung Chang of NCTU (Email: <u>CCCHANG@Faculty.NCTU.EDU.Tw</u> – Date attached June 17, 2011)

Data attached also included the chemical analysis of the elements of this same $NC_{dl}EC$ preparation.

 NC_{dl} (white powder preparation) effect on inhibition of HIV-1 replication in infected CD4 positive H₉ cells as determined by using HIV-1 p²⁴ antigen ELSA (*PNAS* 1985, 82: 5199-5262)

Professor Ru Chih Huang and Dr. Ibrahim Adb-Elazem, PhD Johns Hopkins University and experiments were carried out in P3 laboratory at JHSPH

Data showed NC_{dl} inhibited HIV-1 infection and replication with an IC₉₀ at 40μ M. Data attached

3. Detection of NC_{dl} in HIV-1 infected H₉ cells under the treatmnt condition as described in section 2 attachment.

Preliminary examination by TEM (procedure attached) was made by Michael McCaffrey, Director Intergrated Imaging Center, Johns Hopkins University.

Images of infected NC_{dl} treated H₉ cells were attached. NC_{dl} in various lengths <100nm were detected in HIV-1 infected H₉ cells (attached). A new HIV infection study with NC_{dl} using 10 times more material is currently on-going at JHU/JHSPH. Samples will be ready for theTEM analysis on Aug. 24, 2011.

4. Original sizes of NC_{dl} were examined using Transmission Electron Microscopy (TEM) by J. Michael McCaffrey, Director The Intergrated Imaging Center The Institute for NanoBioTechnology, Johns Hopkins University.

Images of a fully water saturated NC_{dl} showing the length of the nanoparticles in range of 70-300nm were detected. Similarly, the images of NCdl (white powder in ethanol after sonication) showing the length in range of 70-120nm were observed. Imaging pictures are attached.

5. X-ray diffraction (XRD) spectrum of NCdl chopstick preparation (CPS) was made by Dr. H. J. Kao. X-ray diffraction patterns were determined by means of a standard Norel Co unit equipped with Debeye-Scherrer type cameras of radius $180/\pi$ mm. The patterns were produced with FeKa radiation.

Spectrum of a well defined nano-dispersion of NC_{dl} CPS preparation is attached. XRD study of single NC_{dl} crystals remains to be done.

6. Transmission Electron Microscopy (TEM) study of NCdl CPS preparation is currently under investigation both at Dr. Michael McCaffrey's Intergrated Imaging Center at Johns Hopkins University and at Dr. H. J. Kao's laboratory.

Confirmation of NC CPS particle size by TEM will be very important for the structure/function studies of NC_{dl} in the coming months of 2011 and beyond.

B. Progress Report: Supporting Data

Data Attachments

(1) a.

DLS Report - NanoClaydl

There are two independent measurements for the Nano-Claydl by dynamic light scattering. Both samples

have been centrifuged at 10000×g for 3 min.

In first measurement the mean diameter is 41.8 nm Fig 1 and Fig 2, respectively.

Figure 1. DLS measurement of nano-claydl. (a) Correlation function of nano-claydl. The red dots denoted the experiment data and blue curve denoted the NNLS (non-negative least square) fitting of these data. (b) The error of the fitting is approximately 0.32%.

Figure 2. The fitting result of DLS by NNLS (A) The plot is draw by the diameter *vs.* the relative number of events. (B) The summary of the diameter *vs.* the relative number in a spreadsheet.

In second measurement the mean diameter is ~52.2 nm in Fig 3 and Fig 4, respectively.

Figure 3. DLS measurement of nano-claydl. (a) Correlation function of nano-claydl. The red dots denoted the experiment data and blue curve denoted the NNLS fitting of these data. (b) The error of the fitting is approximately 0.09%.

6

Figure 4. The fitting result of DLS by NNLS (A) The plot is draw by the diameter *vs.* the relative number of events. (B) The summary of the diameter *vs.* the relative number in a spreadsheet.

(B)

(A)

(2) b.

Chemical Composition of NCdl EC Preparation – June 17th

Semi-Quantitation Report - Detailed (Text Only)

File Path Method Acq Time Sample Name Sample Type Comments Prep Dilution Total Dilution Operator Name Acq Mode Bkg File Bkg Rejected 1 Interference 0 ISTD Correction ISTD File ISTD Element	: Sample : : 50.00 = (50.00 / 1.000) * 1.000 : Undiluted n : 50.00 : WEN : Spectrum : Masses: Correction : OFF n: OFF :	Eyecare Prep. 0.8% Solution of NCa in water Clay-based PLSNs (Polymer-layered silicate nanocomposites
ISTD Element ISTD Element ISTD Element ISTD Element	1 : 2 : 3 : 4 : : D:\DATA\FULLSCAN1\K30.D	

Li 7 540.0 ppb 13,667.10 0.1 Be 9 30.00 ppb 550.0333 0.1 B 11 480.0 ppb 6,31.672 0.1 Na 23 260,000 ppb 47,552,540 0.1 Mg 24 120,000 ppb 9,197,382 0.1 Al 27 610,000 ppb 26,750,400 0.1 Si 29 1,600,000 ppb 2,411,904 0.1 Si 29 1,600,000 ppb 2,411,904 0.1 Si 29 1,600,000 ppb 2,417,289 0.1 Si 39 9,700 ppb 1,650.173 0.1 Si 34 3,300 ppb 28,260.00 0.1 Sc 45 49.00 ppb 1,4358.05 0.1 Ti 47 670.0 ppb 17,282.87 0.1 V 51 30.00 ppb 760.0511 0.1	
B 11 480.0 ppb 6,331.672 0.1 Na 23 260,000 ppb 47,552,540 0.1 Mg 24 120,000 ppb 9,197,382 0.1 A1 27 610,000 ppb 26,750,400 0.1 Si 29 1,600,000 ppb 26,750,400 0.1 P 31 390.0 ppb 2,411,904 0.1 S 34 3,300 ppb 28,260.00 0.1 K 39 9,700 ppb 1,477,289 0.1 Ca 43 7,400 ppb 6,591.819 0.1 Ti 47 670.0 ppb 17,282.87 0.1 V 51 30.00 ppb 17,282.87 0.1 V 51 30.00 ppb 760.0511 0.1 Mn 55 190.0 ppb 75,259.07 0.1 Mn 55 190.0 ppb 14,648.50 0.1	
Na 23 260,000 ppb 47,552,540 0.1 Mg 24 120,000 ppb 9,197,382 0.1 A1 27 610,000 ppb 26,750,400 0.1 Si 29 1,600,000 ppb 2,411,904 0.1 P 31 390.0 ppb 1,650.173 0.1 S 34 3,300 ppb 28,260.00 0.1 K 39 9,700 ppb 1,477,289 0.1 Ca 43 7,400 ppb 6,591.819 0.1 Sc 45 49.00 ppb 17,282.87 0.1 Ti 47 670.0 ppb 17,282.87 0.1 V 51 30.00 ppb 760.0511 0.1 Mn 55 190.0 ppb 75,259.07 0.1 Mn 55 190.0 ppb 14,648.50 0.1 Ni 60 110.0 ppb 16,700.81 0.1	
Mg 24 120,000 ppb 9,197,382 0.1 A1 27 610,000 ppb 26,750,400 0.1 Si 29 1,600,000 ppb 2,411,904 0.1 P 31 390.0 ppb 1,650.173 0.1 S 34 3,300 ppb 28,260.00 0.1 K 39 9,700 ppb 1,477,289 0.1 Ca 43 7,400 ppb 6,591.819 0.1 Sc 45 49.00 ppb 14,358.05 0.1 Ti 47 670.0 ppb 11,014.97 0.1 V 51 30.00 ppb 760.0511 0.1 Cr 53 -3.900 ppb 749,600.8 0.1 Cr 53 -190.0 ppb 749,600.8 0.1 Co 59 25.00 ppb 14,648.50 0.1	
Mg 24 120,000 ppb 9,197,382 0.1 A1 27 610,000 ppb 26,750,400 0.1 Si 29 1,600,000 ppb 2,411,904 0.1 P 31 390.0 ppb 1,650.173 0.1 S 34 3,300 ppb 28,260.00 0.1 K 39 9,700 ppb 1,477,289 0.1 Ca 43 7,400 ppb 6,591.819 0.1 Sc 45 49.00 ppb 14,358.05 0.1 Ti 47 670.0 ppb 17,282.87 0.1 V 51 30.00 ppb 11,014.97 0.1 Cr 53 -3.900 ppb 760.0511 0.1 Mn 55 190.0 ppb 749,600.8 0.1 Co 59 25.00 ppb 14,648.50 0.1	
Si 29 1,600,000 ppb 2,411,904 0.1 P 31 390.0 ppb 1,650.173 0.1 S 34 3,300 ppb 28,260.00 0.1 K 39 9,700 ppb 1,477,289 0.1 Ca 43 7,400 ppb 6,591.819 0.1 Sc 45 49.00 ppb 14,358.05 0.1 Ti 47 670.0 ppb 17,282.87 0.1 V 51 30.00 ppb 11,014.97 0.1 Cr 53 -3.900 ppb 760.0511 0.1 Mn 55 190.0 ppb 75,259.07 0.1 Co 59 25.00 ppb 14,648.50 0.1 Ni 60 110.0 ppb 16,700.81 0.1 Cu 63 47.00 ppb 16,700.81 0.1 AG0 10.0 ppb 16,700.81 0.1 ARGJ Zn	
P 31 390.0 ppb 1,650.173 0.1 S 34 3,300 ppb 28,260.00 0.1 K 39 9,700 ppb 1,477,289 0.1 Ca 43 7,400 ppb 6,591.819 0.1 Sc 45 49.00 ppb 14,358.05 0.1 Ti 47 670.0 ppb 17,282.87 0.1 V 51 30.00 ppb 11,014.97 0.1 Cr 53 -3.900 ppb 760.0511 0.1 Mn 55 190.0 ppb 749,600.8 0.1 Co 59 25.00 ppb 14,648.50 0.1 Ni 60 110.0 ppb 16,700.81 0.1 Cu 63 47.00 ppb 17,091.50 0.1 Zn 66 1,400 ppb 116,714.1 0.1 Ga 69 190.0 ppb 59,131.68 0.1	
S 34 3,300 ppb 28,260.00 0.1 K 39 9,700 ppb 1,477,289 0.1 Ca 43 7,400 ppb 6,591.819 0.1 Sc 45 49.00 ppb 14,358.05 0.1 Ti 47 670.0 ppb 17,282.87 0.1 V 51 30.00 ppb 11,014.97 0.1 Cr 53 -3.900 ppb 760.0511 0.1 Mn 55 190.0 ppb 749,600.8 0.1 Co 59 25.00 ppb 14,648.50 0.1 Ni 60 110.0 ppb 16,700.81 0.1 Cu 63 47.00 ppb 17,091.50 0.1 Zn 66 1,400 ppb 116,714.1 0.1 Ga 69 190.0 ppb 59,131.68 0.1	
K 39 9,700 ppb 1,477,289 0.1 Ca 43 7,400 ppb 6,591.819 0.1 OXII Sc 45 49.00 ppb 14,358.05 0.1 OXII Ti 47 670.0 ppb 17,282.87 0.1 V 51 30.00 ppb 11,014.97 0.1 Cr 53 -3.900 ppb 760.0511 0.1 Mn 55 190.0 ppb 75,259.07 0.1 Mn 55 190.0 ppb 749,600.8 0.1 Co 59 25.00 ppb 14,648.50 0.1 Ni 60 110.0 ppb 16,700.81 0.1 Cu 63 47.00 ppb 17,091.50 0.1 Zn 66 1,400 ppb 116,714.1 0.1 Ga 69 190.0 ppb 59,131.68 0.1	
Ca 43 7,400 ppb 6,591.819 0.1 OXII Sc 45 49.00 ppb 14,358.05 0.1 Ti 47 670.0 ppb 17,282.87 0.1 V 51 30.00 ppb 11,014.97 0.1 Cr 53 -3.900 ppb 760.0511 0.1 Mn 55 190.0 ppb 75,259.07 0.1 Co 59 25.00 ppb 14,648.50 0.1 Ni 60 110.0 ppb 16,700.81 0.1 Cu 63 47.00 ppb 17,091.50 0.1 Zn 66 1,400 ppb 116,714.1 0.1 Ga 69 190.0 ppb 59,131.68 0.1	
Sc 45 49.00 ppb 14,358.05 0.1 Ti 47 670.0 ppb 17,282.87 0.1 V 51 30.00 ppb 11,014.97 0.1 Cr 53 -3.900 ppb 760.0511 0.1 Mn 55 190.0 ppb 75,259.07 0.1 Fe 57 140,000 ppb 749,600.8 0.1 Ni 60 110.0 ppb 16,700.81 0.1 Ni 60 110.0 ppb 16,700.81 0.1 Cu 63 47.00 ppb 17,091.50 0.1 Zn 66 1,400 ppb 116,714.1 0.1 Ga 69 190.0 ppb 59,131.68 0.1	
Ti 47 670.0 ppb 17,282.87 0.1 V 51 30.00 ppb 11,014.97 0.1 Cr 53 -3.900 ppb 760.0511 0.1 Mn 55 190.0 ppb 75,259.07 0.1 Fe 57 140,000 ppb 749,600.8 0.1 Co 59 25.00 ppb 14,648.50 0.1 Ni 60 110.0 ppb 16,700.81 0.1 Cu 63 47.00 ppb 17,091.50 0.1 Zn 66 1,400 ppb 116,714.1 0.1 Ga 69 190.0 ppb 59,131.68 0.1	E
V 51 30.00 ppb 11,014.97 0.1 Cr 53 -3.900 ppb 760.0511 0.1 Mn 55 190.0 ppb 75,259.07 0.1 Pe 57 140,000 ppb 749,600.8 0.1 Co 59 25.00 ppb 14,648.50 0.1 Ni 60 110.0 ppb 16,700.81 0.1 Cu 63 47.00 ppb 17,091.50 0.1 Zn 66 1,400 ppb 116,714.1 0.1 Ga 69 190.0 ppb 59,131.68 0.1	
Cr 53 -3.900 ppb 760.0511 0.1 Mn 55 190.0 ppb 75,259.07 0.1 Fe 57 140,000 ppb 749,600.8 0.1 Co 59 25.00 ppb 14,648.50 0.1 Ni 60 110.0 ppb 16,700.81 0.1 Cu 63 47.00 ppb 17,091.50 0.1 ARGJ Zn 66 1,400 ppb 116,714.1 0.1 Ga 69 190.0 ppb 59,131.68 0.1	
Cr 53 -3.900 ppb 760.0511 0.1 Mn 55 190.0 ppb 75,259.07 0.1 Fe 57 140,000 ppb 749,600.8 0.1 Co 59 25.00 ppb 14,648.50 0.1 Ni 60 110.0 ppb 16,700.81 0.1 Cu 63 47.00 ppb 17,091.50 0.1 ARGJ Zn 66 1,400 ppb 116,714.1 0.1 Ga 69 190.0 ppb 59,131.68 0.1	
Pe 57 140,000 ppb 749,600.8 0.1 Co 59 25.00 ppb 14,648.50 0.1 Ni 60 110.0 ppb 16,700.81 0.1 Cu 63 47.00 ppb 17,091.50 0.1 ARGI Zn 66 1,400 ppb 116,714.1 0.1 Ga 69 190.0 ppb 59,131.68 0.1	
Co 59 25.00 ppb 14,648.50 0.1 Ni 60 110.0 ppb 16,700.81 0.1 Cu 63 47.00 ppb 17,091.50 0.1 ARGI Zn 66 1,400 ppb 116,714.1 0.1 Ga 69 190.0 ppb 59,131.68 0.1	
Ni 60 110.0 ppb 16,700.81 0.1 Cu 63 47.00 ppb 17,091.50 0.1 ARGI Zn 66 1,400 ppb 116,714.1 0.1 Ga 69 190.0 ppb 59,131.68 0.1	
Cu 63 47.00 ppb 17,091.50 0.1 ARGI Zn 66 1,400 ppb 116,714.1 0.1 Ga 69 190.0 ppb 59,131.68 0.1	
Zn 66 1,400 ppb 116,714.1 0.1 Ga 69 190.0 ppb 59,131.68 0.1	
Ga 69 190.0 ppb 59,131.68 0.1	DE
Ga 69 190.0 ppb 59,131.68 0.1	
Ge 72 11.00 ppb 970.0782 0.1	
As 75 8.800 ppb 480.0258 0.1	
Se 82 18.00 ppb 90.00553 0.1 OXII	Е
Br 79 9.300 ppb 320.0176 0.1 ARGI	DE
Rb 85 99.00 ppb 41,416.19 0.1	
Sr 88 370.0 ppb 209,279.0 0.1	
Y 89 34.00 ppb 33,398.58 0.1	
2r 90 270.0 ppb 150,767-41 0.1	

Nb	93	120.0	daa (127,910.5	No. 100 111	0.1	
Mo	95	0.7700		140.0059			
Ru	101	0.2200		50.00336		0.1	
Rh	103	<0.04000		30.00112	~ ~ ~	0.1	OXIDE
Pd	105	0.5700	2Ph			0.1	
6 2.4	100	0.5700	add i	130.0056		0.1	OXIDE
Ag	107	0.2800	daa	160.0067		0 1	
Cd	111	1.100		110.0056		0.1	
In	115	0.8500	nnh	890.0735		0.1	
Sn	118	120.0			the same same	0.1	
Sb	121	1.300		33,183.95		0.1	
00		1.000	ppp	400.0205		0.1	
Те	125	.2 100					
I	123	<2.100		0.000000		0.1	
		3.900		1,170.112	~ ~ ~	0.1	
Cs	133	81.00		82,112.07		0.1	
Ba	137	310.0		46,725.91		0.1	
La	139	21.00	ppb	37,462.03	10 m	0.1	
						V. 4	
Ce	140	77.00	ppb	128,236.9		0.1	
Pr	141	5.900		13,571.28		0.1	
Nd	146	17.00		7,238.679			
Sm	147	5.200		1,670.660		0.1	
Eu	153	0.3700				0.1	
	and and and	0.0100	PPD	450.0481		0.1	OXIDE
Gd	157	6.800	nnh				
Tb	159			2,491.920	~ ~ ~	0.1	
Dv	163	0.7300		1,790.879		0.1	
Ho		2.800		1,740.530		0.1	
	165	0.8500		2,090.823	· · · ·	0.1	
Er	166	2.900	ppb	2,251.581		0.1	
Tm	169	0.5200	nnh	2 200 524			
Yb	172	3 000	ppp	1,320.534	~ ~ ~	0.1	
Lu	175	3.900	aqq	2,481.589	10 -01 Am	0.1	
Hf		0.5800		1,530.796	an 16 m	0.1	
	178	18.00	A. A.	10,054.78		0.1	
Ta	181	29.00	ppb	74,313.05	* ** **	0.1	
W	182	0.7000	nnh	120 0225			
Re	185			470.0316	198 193. pm.	0.1	HYDRIDE
Os	189	<0.05600		0.000000		0.1	
		<-6.600E-6		10.00039		0.1	
Ir	193	0.06500	ppb	80.00394	= = -	0.1	
Pt	195	<0.09000	ppb	40.00158		0.1	
Au	197	0.6000	nnh	450 0000			
Hq	202	<-0.03500		450.0263		0.1	
Tl	202			40.00158	and the app	0.1	
Pb	208	0.2500		460.0277	~ ~ ~	0.1	
		27.00	PL Bu	31,131.25	an in in	0.1	
Bi	209	1.200	ppb	2,060.518		0.1	
Th	232	24 00	mah	20 226 14			
[]	238	34.00		78,370.16	40 M -	0.1	
C	200	9.100	add	23,216.70	a	0.1	

End of Report

Fri Jun 17 12:06:20 2011

Submitted by Dr. Ming Hwu Tsu, Assistant Researcher NTHU

First Report: NC Effect on HIV-1 Replication in H9 Cells

Preparation of NC in Growth Medium

100%	90% RPMI	NC in 90% RPMI	Final	NC	NC (µM)**
RPMI	10% CPE	10% CPE	Volume	Concentration *	
(I)	(II)	(III)		(µg)	
148.8 µl	51.2 µl	0 µl	200 µl	0 μg/200 μl	0 μΜ
148.8 µl	44.8 µl	6.4 μl	200 µl	6.4 μg/200 μl	40 μΜ
148.8 μl	38.4 µl	12.8 µl	200 µl	12.8 μg/200 μl	80 µM
148.8 µl	25.6 µl	25.6 µl	200 µl	25.6 μg/200 μl	160 μM
148.8 µl	0 µl	51.2 µl	200 µl	51.2 μg/200 μl	320 μM

Effect of Nanoclay on HIV-1 IIIB Replication in H9 Cells

Concentrations (NanoClay)	Reading of the Replicates	Subtration from Average of negative cells (0.057)	Viral % Inhibition
	Av	(No virus and no NanoClay)	
320 μM	0.068 (0.108, 0.049, 0.048)	0.011	99.7
160 µM	0.052 (0.055, 0.05, 0.051)	0.000	100.0
80 μM	0.069 (0.077, 0.062, 0.069)	0.012	99.6
40 µM	0.381 (0.456, 0.451, 0.237)	0.324	90.5
0 μM	3.478 (4.0, 4.0, 2.435)	3.421	

Ruchik C. Haar

Rachah C. Huan